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Transport and fractionation in periodic potential-energy landscapes
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Objects driven through periodically modulated potential-energy landscapes in two dimensions can become
locked in to symmetry-selected directions that are independent of the driving force’s orientation. We investi-
gate this problem in the overdamped limit, and demonstrate that the crossover from free-flowing to locked-in
transport can depend exponentially on an object’s size, with this exceptional selectivity emerging from the
landscape’s periodicity.
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|. INTRODUCTION II. MOTIONS THROUGH LANDSCAPES
The theme of transport through modulated potential- A. The equation of motion

energy landscapes pervades solid-state physics and arises in . . . . .

many natural and industrial processes. This problem has COnsider a Brownian particle moving, under the influence
been studied extensively in the quantum-mechanical limitof @ uniform driving forceF,, through the force field(r)
Considerably less attention has been paid to the classicte to an inhomogeneous medium or landscape. Its trajec-
limit, where effects such as viscous damping and thermalory is described by the Langevin equatifdn7]

randomization complicate the analysis. This article focuses ar

on noninertial transport of classical objects driven through E—=F(r)+Fo+T(1), (1)
periodically modulated potential-energy landscapes by con- dt

stant, uniform forces. The one-dimensional variant of th'swhereg is the particle’s viscous drag coefficient, aFicde-
problem has been thoroughly investigafél and its results ib dom th | fluctuati This L in f i-
have been applied profitably to such processes as gel elegc/0€s ran _om ermay fiuctua |o_ns. IS Langevin force sa
trophoresis. We focus instead on the overdamped motions eﬁﬂes (r(v)=0 anq (re 'F,(HT»_g kT 5(_7) at tempera-
classical objects as they flow through two-dimensional perifure T, where &(7) is the Dirac delta function. A sphere of
odic landscapes, about which far less is known. Such highefadiusa immersed in an unbounded fluid of viscosipy for
dimensional periodic landscapes have shown exception&xample, hag=6mna.

promise as a mechanism for sorting mesoscopic objects. Our In the limit thatF, andF both greatly exceed the scale of
discussion draws upon recent experimental realizations dhermal forced”, the Langevin equation, E@l), reduces to
this process in which macromolecules or mesoscopic colloia first-order deterministic equation of motion. This article
dal particles are observed while moving through arrays ofocuses on two-dimensional systems, the simplest case ex-
microfabricated postg2,3] and through regular arrays of op- hibiting nontrivial behavior. Even this deceptively simple
tical traps[4—€]. In both cases, particles’ differing interac- system vyields surprising results, as we will see.

tions with the physical landscape and their differing re-
sponses to the external driving force can cause them to
follow radically different paths, and thus into distinct frac-
tions. In the particular case of fluid-borne colloidal particles, a

Section Il introduces the theoretical framework for de-uniform driving force might be exerted by viscous drag, by
scribing driven objects’ interactions with inhomogeneous engravity, or through electrophoresis, magnetophoresis, or ther-
vironments in the context of recent experimental realizationsmophoresis. Each of these plays a central role in practical
We then apply this in Sec. Il to the particularly simple casefractionation techniquef8]. More generally, analogous re-
of transport across a linear barrier or potential trench. Such aults should be expected for such related systems as electrons
landscape can continuously sort mixtures of objects into twdlowing through a periodically gated low-mobility two-
distinct fractions, but with only algebraic sensitivity to prop- dimensional electron gg®], magnetic flux quanta creeping
erties such as size. Generalizing to periodic landscapes irough patterned type-ll superconductdd€-13 or Jo-
Secs. IV and V leads generally to fractionation wékpo-  sephson junction arraygl3], and atoms migrating across
nentialsize selectivity. Exploiting this exceptional resolution crystal surface§14].
for practical separations may be difficult, however, in the In some instances of practical interest, the driving force
most straightforward implementations. Other potential landitself can be modulated by the physical landscape, leading to
scapes, such as a line of discrete potential wells, discussed additional interesting effectgl5]. These, however, are be-
Sec. VI, offer exponential size selectivity with good pros-yond the scope of the present discussion. Time-dependent
pects for practical implementations. driving forces also lead to exciting phenomena, but are not

B. The driving force
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required for the effects we describe. We consider the simplest The effective potential may be expressed as the convolu-
case, where the driving fordg, is both uniform and constant tion,
and is oriented at a fixed angtewith respect to the land-

scape symmetry axis, here denofed V(r)=(fe(r) 2
In the absence of other influences, particles would travel

along the driving direction while dispersing diffusively in the :f f(x — 1)1 (x)d? (3)

transverse direction. Differential dispersion by transverse '

diffusion has proved useful for continuously fractionating

heterogeneous samples across laminar flows in microfluidi@f the_t\/_vo-dlmenspna! landscape ) with a form factorf(r)
channelg16]. Adding a modulated substrate opens up addi_descnbl_ng the obje_cts interaction with the landscape. In
tional avenues for separating particles according to theifomparing to experimental realizations, we assume that con-

sizes, and can greatly improve the resolution of such separdfibutions from the form factor’s third dimension have been
tions. integrated out. H(r) has a symmetry axis along tiedirec-

tion, then the associated force
C. Creating landscapes F(r)==V (fol)(r) (4)

Several approaches have been introduced in recent yeaggnerally does as well. Convolving witiir) broadens fea-

for structuring potential-energy landscapes on molecular rog inl(r) by an amount that depends on the object’s size,
macromolecular, and cellular lengths scales. Among thes@hape orientation, and composition

are arrays of lithographically defined microscopic posts inte- In many cases of practical interest, the convolution in Eq.

grated into hermetically sealed fluidic channels, which pro-(z) is most easily performed using the Fourier convolution
vide a periodic and precisely tuned alternative to the ge'?heorem:

used for electrophoresid 7]. Arrays of interdigitated elec-

trodes[18,19 have also been used to establish periodic po- (fFo1)(r) = FYF(K)I(K)}, (5)
tentials through dielectrophoresis. The emphasis in these 5 _

studies, however, has been on ratchetlike behavior inducegheref(k) andI(k) are the Fourier transforms dfr) and
by time-dependent potentials. I(r), respectively, andy(r)=FYg(k)} denotes the inverse

More recently, techniques have been developed for tailoreourier transform ofj(k). In some particularly simple cases,

ing extensive potential-energy landscapes using forces e)E)'othﬂf'(k) andT(k) can be factored into components along the

erted by light. The most capable of these exploit optical gra-, and § directions, reducing Eq(5) to a product of one-

dient forces, meaning that dipole moments induced idimensional integrals. In other cases, separable approxima-
illuminated objects respond to gradients in the light's electrict. for the f f t' th' leading-ord i
field. Such forces are the basis for the single-beam opticaions or e' orm factor emerge as the leading-order cumu
trap known as an optical tweez¢20], which acts as a lant expansion of (k).

potential-energy well for particles with appropriate optical For example, the form factor for a uniform dielectric cube
properties. More generally, an extended optical intensity disOf side a aligned with thex axis and illuminated by colli-
tribution will produce an associated potential-energy landmated light is

scape. a a

The most straightforward way to project periodic intensity f(r)=caa <— - |x|)®<— - |y|) , (6)
profiles is to create a standing-wave interference pattern from 2 2

two or more coherent beams of light. Such patterns havghere®(x) is the Heaviside step function, and

come to be known as optical lattices, particularly when ap- .
plied to controlling the distributions and motions of matter. ) Ve[ €~ € )
More general intensity patterns can be created with holo- a=em c \e+2¢

graphic optical tweezer§21-23 or with the generalized . o o o
phase contrast techniqyi24], which establish extended op- describes the matter-light interaction, in the quasistatic limit,

tical trapping patterns using computer-generated hologramd0r & material of dielectric constagtimmersed in a medium
of dielectric constant, [25]. Both this geometry and the

collimated light field are far simpler than would be encoun-
tered in most real-world optical trapping implementations

The physical landscape may be represented by a functiofpe], but serve to illustrate our approach. A more complete
I(r) describing a potential-determining property such as the@reatment of optical forces would also incorporate polariza-
local optical intensity. An object’s potential energyras not  tion effects, which cannot be captured in the present scalar
simply proportional tal(r), but depends on the object’'s ge- theory. Higher-order effects such as Mie resonani@s
ometry and composition. For example, larger particles apeould be taken into account through but will be ignored in
proaching a well-localized optical trap encounter the trap'she current discussion. Note thatis negative for a high-
intensity gradients at larger ranges than smaller particles. Thdielectric-constant material in a low-dielectric-constant me-
observation that different objects passing through the saméium; such particles are drawn toward regions of high inten-
environment experience different potential-energy landsity. Low-dielectric-constant particles, by contrast, are
scapes provides the foundation for the results that follow. repelled by light.

D. Form factors
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The aligned cube’s form factor is separable, with Fouriersingle trench or barrier arranged at an angle to the driving
transform force. This kind of landscape may be realized, for example,
- - - by creating a linear optical trap with a cylindrical lens or a
f(k) = a a° fy(k@)f,(k,a). (8) diffractive line generator. Because such an optical landscape
can act as either a barrier or a trench, depending on the sign
of «, we will refer to both as fringes. In either case, a fringe
sinka aligned with thex axis inhibits transport in the transverse
ka 9 direction. We model such a landscape as a Gaussian profile
of intrinsic widthw,

The individual components are readily shown to be

To(ka) =T,(ka) =

Their leading-order cumulant expansion

y2
r < I(r)=1 p(— —) . 17)
f(ka) =T,(ka) = exp<— ék2a2> (10 (N=loex) -5,z (

_ Using the object’s form factor as defined in Ed4), the
for ka< 7 demonstrates that the form factor’s Fourier trans-associated potential is

form depends sensitively on particle size for a given wave 5
number. Note that, as definefj(ka) andf,(ka) are dimen- V(r) =27m|0a3W exp(— y ) (18)
sionless and normalized to unity kea=0. a(a) 20%(a)

The form factor for a uniform dielectric sphere of radais
illuminated by collimated light of wavelength>a is [25]

The fringe’s apparent width to a particle of siads broad-
ened too(a)=vaZ+w-.
f(ry=a Va?-r2 O(a-r), (11 In the limit that thermal forces may be ignored, the equa-

o ) tions of motion reduce to the deterministic form
which is not separable. The leading-order cumulant expan-

sion of?(k), however, is separable, with %( = v, COS 6, (19)
~ 2ma~ ~
f(k) = anX(an)fy(kya), (12 g
here d—)t’ = £1F,(y) +vg sin 0, (20)
~ ~ 1 where the landscape-free drift speedjs & *F, and
f(ka)=T,(ka) = exp(— 1—0|<2a2) (13) P peeté=t o

(9= 2 alg 2 exp(— y ) (21)
for ka<8. yW=2em o 5y 20%a))”

More generally, an object’'s form factor is nonzero only , . .
over a limited domain set by its size. The corresponding The landscape’s restoring forég(y) reaches a maximum

Fourier transform thus depends strongly ke within the &t & diSANCE=Ymay from the fringe’s axis, withyma,=o(a)
appropriate range of wave numbers. We capture the ramiffof Our particular example. I sin 6> F(ymao then a par-

cations of this boundedness by adopting the separable Gaudigle can cross the barrier. Such particles may be said to
ian form escapdhe barrier. By contrast, particles for which the barrier

is insurmountable travel unimpeded along fhdirection at
Fr) = B r_2 14 speedv,=vg cos A and are said to beocked intothe land-
(r)=aaex il (14 scape.
) The marginal anglé,, at which an object just barely re-
whose Fourier transform mains locked into the barrier determines which objects are
~n 3% ~ deflected and which are not. The dependencé,pbn par-
f(k) = 2maa” f(ka)f,(ka) (15 ticle size and other characteristics establishes the sensitivity
has components of the sorting technique. Referring to Eq80) and(21), the
condition for locked-in transport,
~ ~ 1
f (ka) = f,(ka) = ex;{— —k2a2>. (16) =
g Y 2 sin 0 <sin G, = —w (22)
Landscapd (r) determines which wave numbers contribute 0
to the object’s transport properties. The following sections laflg2m 2w

explore a few particularly effective choices. ————, 23
p p y Fo \J'Eaz W2 (23

applies to both attractive trenchég,.,=+o) and repulsive
barriers(yma=—0). The general result E422) applies even

In part to motivate a discussion of periodic potential-if f(r) is not separable because, in this case at léast,is
energy landscapes, we first consider how objects traverseiadependent ok.

Ill. LINEAR FRINGES
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The particular result in Eq23) shows than the marginal
lock-in angle depends only algebraically on size, and only
linearly on other properties through This is neither better
nor worse than the performance offered by other established
techniques such as gel electrophoresis or flow-field fraction-
ation [8]. One substantial benefit offered by selective trans-
port across a fringe is its ability to process a continuous
stream of objects rather than being restricted to discrete
batches. The selected fraction, moreover, can be tuned con-
tinuously, for example, by adjusting, F,, w, or 6. Optical
implementations also can be optimized by varying the wave-
length of light, in which case resonances might be exploited FIG. 1. Schematic representation of a sinusoidal landscape,
as a complementary mechanism for size separation. modulated along th§ direction.

Although a single fringe’s performance is somewhat lack-
luster, one might expect multiple fringes to fare better. Themplemented experimentally. In the case of optical forces, a
first step along this direction is to consider a pair of parallelsinusoidal pattern can be created by interfering two coherent
Gaussian fringes. The effective potential is the sum of twdaser beams, with the wave numberbeing determined by

single-fringe potentials: the optical wavelength and the angle between the beams.
2w (y +b/2)? Such an interference pattern is known as a one-dimensional
V(r)=27mlo—{exp<— —> optical lattice[27], and is commonly used to control and
a(a) 20° distribute cold atoms. More recently, optical lattices have
(y - b/2)? been used to separate populations of colloidal particles on
+ exp(— 7) , (24) the basis of their sizes and indices of refractjdh

The key to such a potential’s efficacy is in its Fourier

whereb is the fringe separation. Ib<o, the two fringes transform:
overlap enough that the landscape resembles a single, broad- ~ 5
ened fringe. Again, no more than algebraic selectivity should I(k) = (2m)% 198(ky) 8k, = ko). (26)

be expected. In the opposite limii> o, the fringes are in-  conyolution according to Eq(5) therefore picks out the

dependent, and particles cross the double barrier with theomponent of the form factor’s Fourier transform at wave
same facility with which they cross one. Neither of thesenumberko:

cases offers benefits over the single fringe.

For intermediatd, on the other hand, the landscape con- _ ~ 5
sists of two unequal barriers, the smaller of which lies be- V(") =lo | f(k)alk)a(k, -~ kocodkx)cosky)dk — (27)
tween the two fringes. The smaller barrier’s height depends
strongly onb/a, which, in turn, depends on the particle size ~
a. This lower intermediate barrier does not affect the fringes’ =lof(0,kp)coskoy). (28)
overall ability to separate objects, which is dominated by the . ~
larger barrier. It suggests the possibility, however, that trans'—A‘SsumIng a separable form fétk) such as Eq(16),
port acrosN overlapping fringes could be highly sensitive to 3
particle size. Those particles not able to jump the interfringe V(r) =1o fy(koa)coskoy) (29
barriers will be locked in and swept aside while others will
hop_ from one fringe to the_ next across the field. Highly se- =a\;z|oa3 ex;{— }k§a2>cos(koy). (30)
lective sorting is thus possible if edge effects due to the first 2
or last fringe(in the case of trenches or barriers, respec-

tively) can be circumvented. For particle sizes satisfyinigya> v3, the amplitude of the

potential energy landscape’s sinusoidal modulations now de-
pends strongly on particle size through the wave number
IV. SINUSOIDAL LANDSCAPES dependence of the form factor. The particular form in Eq.

The foregoing discussion suggests that a periodically30) reflects our choice of a Gaussian form factor in E.
modulated landscape inclined at an angle to the driving forcélowever, the arguments leading to this choice reveal that
might be more effective than a single fringe at sorting object$omparable results should be obtained quite generally for
by size. To make this more concrete, and to illuminate thdarticles whose size is smaller than the wavelength of the
role of periodicity, we consider the simplest and most in-Physical landscape’s undulatioteg., for spherical particles
structive example of such a landscape, a sinusoid inythe Satisfyingkoa<8).

direction:
A. Deterministic limit

I(r)=1Igco , 25 . . . . .

(1) =1o costkoy) 29 A particle’s trajectory through the sinusoidal landscape is
shown schematically in Fig. 1. Apart from its mathematicaldescribed in the deterministic limit by Eg&l9) and (20),
simplicity, this landscape has the advantage of being readilwith
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Fy(y) = m@ﬂ okod® exp(— %k§a2> sin(kgy). (31

Nonseparable form factors again yield similar results, be-
causd(r) is independent of. Because sitkyy) <1, particles

become locked into th& direction for orientations satisfying > 04l
Zo.

lo — 1 =
%\’ZWkoag exp(— §k§a2>. (32)

0

sin < sin 6,=

By contrast to Eq(23), this reflects an exceptional sorting
sensitivity: whether or not a particle becomes entrained by
the fringes dependsxponentiallyon particle size fokpa> 1.
Among established fractionation schemes, only affinity chro-

0.8

0.6

0.2

0 0.2
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0.4

matography offers comparable selectivi], and this can

tan 6

operate only on discrete samples of a limited class of mac- FiG. 2. (a) Travel direction for an inclined sinusoidal landscape
romolecules. Fractionation in a sinusoidal landscape can opgs a function of orientation for fixed size anga)=0.1, 0.2, and

erate on continuous sample streams and can be implemente®. Trajectories are locked in #(6)=0 for < 6, The diagonal

for a wide range of sample types.

Equations(19), (20), and(30) can be directly integrated
for this simple landscape. The motion in thedirection is
trivial:

X(t) =vg cosh t. (339

If the particles are locked iffi.e., if Eq. (32) is satisfied,
then the particles make no progress in {hdirection, and
y(t) is constant. Otherwise, integration gives

2 in 6+ {t ———
y(t) = k—oarctar[ \/ :: . Z tar( ko;o Vsirfd - 1;2>] ,

(34)

dashed line indicates the result with no landscdpg.Deflection
angle as a function of particle sizeat fixed driving orientation
tan 6=0.441, assumingy,=0.4, independent cd.

ing functional form forz(a), implied by Eqs(14) and(35):

1
7(@) = 7o exp(— 5k3a2> : (39)
where 7y=2maa’lko/Fo. Figure 2b) shows the resulting
dependence of deflection angle on patrticle size, if we assume
that the driving and trapping forces are adjusted suchshat
is a constant, independent af It can be seen that particles
which are not locked in to the fringes #ta)=0 are fanned

where the relative strength of the landscape’s modulation iut into various directions, depending on their size.

1o kof(0,kod)

_ (
n(a) = = (35)

The time required to advance one fringe spadiR/k,
can be seen to be

2

Tz ———, (36)
Kovo\sSinfd — 72
which yields a mean velocity in thg direction of
(vy) = voVSIFo - 7. (37)

On average, the particle travels at an angleo the X axis,
given by

o) 0, sin 0 < 7,

[ - e——

tan = =1 \sirfg - 7 38
anlp <UX> M, Sin 0> 7. ( )

cosé

The deflection angle is plotted in Figi& as a function of
the driving force’s orientatiord for various values of the
normalized potentialy(a). The direction in which particles
flow increases fromj/=0 as the driving force’s orientation
crosses the condition for marginal lock-ifi,=arcsinz. At
steeper angles) approache9.

Unlike the case of the single fringe, where a particle ei-
ther flows along the fringe or else travels in the driving di-
rection, the sinusoidal landscape’s continuous dispersion dis-
tributes heterogeneous samples into multiple fractions, but
also limits the achievable size resolution. The fraction dis-
persed into a finite angular range/ aroundy includes an
associated range of sizes

a7t
Aa=|—| Ay, 40
a (aa) 4 (40)
which, for the locked-in fraction ap=Ay/2<1, is
J 2\ -1
AazcosZG(a—Z) AP (41)

Thus, the exponential size selectivity implied by E2R) can

be lost in the exponentially wide collection window imposed
by 7(a) on practical implementations. This performance can-
not be improved by passing the set of particles through the
fringes a second time, because of the fixed relationship be-
tweenAa and Ay.

Although single-stage fractionation by a sinusoidal land-
scape yields broad size distributions, a narrow range of par-
ticle sizes can still be captured by using the following, two-
step process. The deflection angle is first set such that all

While this result is quite general, we can make the depenparticles larger than a certain siagwill be locked in. These
dence on particle size more explicit by assuming the follow-locked-in particles are discarded, and the remaining particles
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are sent through a second potential landscape, with a differ T N
ent deflection angle, chosen such that all particles larger thar ¢ ¢ I
a second sizey <a, are locked in. Only the locked-in par-
ticles from this second stage are then retained, so that all o
the remaining particles have sizes in the rafaea,], which

can be made as small as desired.

With periodicity providing the essential ingredient for
achieving exponential size selectivity, it might be expected
that any periodic landscape would do. Unfortunately, this is
not necessarily so. We already have demonstrated in Sec. Il
that an array of well-separated Gaussian fringes offers only
algebraic, rather than exponential, size selectivity. A more = . . . . ‘
general periodic landscape with wavelength/R, can be 00 a4 00 0 0'1k 02
expanded as a Fourier series: 04

0.41-
>
c
8

tan v

* FIG. 3. (a) Deflection as a function of orientation at finite tem-
I(r)= |02 Brsin(nkyy), (42 peraturesr=0.01, 0.1, 0.2, and 0.3, assuming 0.4. The diagonal
n=0 dashed line indicates the result with no landsca@pgDependence
) . L L . of the travel direction on particle sizefor 7,=0.4, tan6=0.441,
with Fourier coefficientss,. If one of these coefficients is 4nq the same set of temperatures. Raising the temperature weakens
significantly larger than all the others, then the equations ofne size dependence gfa), and thus reduces the selectivity.
motion can be approximated by Egd9) and (20), and
equivalently good size selectivity will be obtained. If, on the
other hand, no single component dominates, then the supef:
position will not necessarily perform so well.

The average velocity in thedirection is unchanged from
e zero-temperature case. The mean deflection angte
thus given by

B. Biased diffusion 2 sing sin 0
Modeling thermal effects is reasonably straightforward tany=tang) 1+ 7 'm{31<7" 7 )] . (47)

for the sinusoidal landscape. In this case, the Langevin equa-

tion [Eq. (1)] is most r_ead||y solved by tr_e_msformmg INto & i i plotted in Fig. @) as a function of the anglé of the
Eok_ker-PIar_wck equauor_w_for the_ probab_|I|ty (_jensm(y ) of driving force, for a fixed value of the normalized potential
f'”d'T‘g particles at position at timet. If inertial _effects are n(a), and for various values of the normalized temperature
negllglbl_e, the Fokker-Planck equation for_ mot|or_1 transversqt can be seen that the effect of increasing temperature is to
to the fringes reduces to a Smoluchowski equafttjn smooth out the transition between the locked-in and freely

ap(y,t) +d,3y,t) =0, (43)  flowing states of motion. In the zero-temperature limit, the
N Y . deflection angle is zero for all angl@s<arcsin. For finite
where the probability current is temperatures, the mean deflection angle is nonzero even in
1 _ this “locked-in” state: the particles have a finite probability
Sly.) = £1F() ~ ke ToyJp(y. 1) (44) per unit time of being driven over the interfringe barrier by

In this equationF(r) is the total force on the particle, includ- thermal fluctuations, and thereby advancing in $hdirec-

ing the driving force and the force due to the potential land-tON. _ o o _ _

scape T is the temperature, arlg is Boltzmann's constant. The benefits of operating in the deterministic regime, in
Following Ref.[1], Eq. (43) can be solved in the steady- Which thermal forces are negligible, can be seen in Filg), 3

state limit by takingS(y,t)=9(y), independent of. The re- where the deflection angle is shown as a function of the

sulting average drift velocityv,) for the sinusoidal potential particle sizea, for a fixed orientation¢, over a range of
of Eq. (30) is given by temperatures. Contrary to previous assertions that thermal

effects can enhance size selectivjgj, the only effect of
(vy) 2 sin el [ ( sin 0)] ( thermally assisted hopping in this system is to diminish the
=1+ m T, ,

sorting resolution.

In other words, achieving high-sensitivity sorting in prac-
where, as befores=kolof(0,k,a)/Fo, and we have intro- tice will require that the thermal energy scale be small com-
duced the normalized temperatureksT/V,. The function pared to the landscape’s modulation. In a real-world imple-

S(7,x) is defined recursively in terms of a continued- Mentation, increasing the depth of modulatign of the
fraction expansion physical landscape will often be more practical than decreas-

ing the temperature. Retaining the same lock-in conditions
1/4 then requires that the driving fordg, be increased propor-

vo Sin 6

Si(m.x) = 7+in X+ Sy (1,X) (46) tionately. The practical limit on the achievable sorting effi-
L ciency will then be set by the maximum driving force or
which converges rapidly with increasing order depth of modulation that can be obtained. For example, the
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08— T — T T T T T 1

(a) | (b) o4
0.6 -
0.12
> >
c 041 / 7 01 ¢
8 =
Na) = 0.1 ]
R n{a) =0.2_ 0.08
Nfa) = 0.3
= -0.06
FIG. 4. Schematic representation of landscape sinusoidally Of———~ | . | | ] N T R
modulated in both thé& and{ directions according to Eq48). o 02 t:h4e 06 0 005 0A1k 015 02 025
a
0

limitation for an optically implemented landscape is the FiG. 5. (a) Deflection as a function of orientation for a separable

available laser power. two-dimensionally modulated landscapezgf)=0.1, 0.2, and 0.3.
The diagonal dashed line indicates the result with no landsc¢hpe.
V. SEPARABLE TWO-DIMENSIONAL LANDSCAPES Size dependence of the deflection angle fg=0.4 and tarp
=0.441.

The one-dimensional potential of E(R5) is one of the

few landscapes that allows for exact solutions of the equa- The zero-temperature deflection angle is plotted in Fig. 5
tions of motion. Two-dimensional landscapes can be solved , fnction of the anglé of the driving force, for a fixed
analytically only if the potential can be written as a sum of, . .o of the normalized potentiaj. Also plottea isy as a
modulations in thex and§ directions. In particular, we can nciion of particle sizen for a fixed 6. The results can be
consider separate sinusoidal modulation with the same P&gen 1o be similar to those obtained with one-dimensional

riod in the two directions: fringes. In other words, no qualitative difference is obtained
1(r) = 1g[sin(koy) + sin(koX)], (48) in this case by modulating in two directions rather than just
one.
shown schematically in Fig. 4. This landscape is interesting |n order to see other effects of increased dimensionality, it
mainly because it leads to decoupled equations of motion: js necessary to consider landscapes that cannot be separated

into one-dimensional terms; i.e., landscapes where the mo-

9(: EWoko cogkoX) + vg €OS 6+ (1) tion in one dimension depends on the position in the other.
dt Analytical solutions are not available for such landscapes.
and However, it is possible to develop limiting arguments that
illustrate some novel features of transport in such landscapes,
dy _, . including the continued possibility for sorting that is expo-
it Voko codkoy) + v sin 6+ A1), nentially sensitive to particle size.

where y(t)=I"/£. Nevertheless, such a landscape could be

VI. LINEAR TRAP ARRAYS

implemented experimentally using optical forces. For ex-
ample, mutually incoherent pairs of laser beams intersecting A. Periodically modulated fringe
at right angles would lead to a potential of the form given in

. . . Combining aspects of Secs. Ill and 1V, we next consider
Eq. (48), as would pairs with orthogonal polarization.

y : AN A X landscapes that are featureless outside a bounded region in
Since t'he motions in thi andy dlrgctlons are mdepen—_ the ¥ direction, and are periodically modulated in thei-

dent in this case, the same exponential sensitivity to particlg,on This features the clean separations of the continuous

size, Eq.(32), is obtained, in the absence of thermal forces.,, ier \ith the exponential selectivity of sinusoidal land-

As well, the same integration can be. used to determine thgcapes. It also provides a straightforward example of the sur-
average deflection angle for free-flowing particles, analogou&ising complexity of nonseparable landscapes

to Eq. (38): The simplest exemplar is the modulated line
tan Y= ——. 51 - bl Sh A%
V= eodo- 7 (51) D)=l AW = (53)
Similarly, for finite temperatures, the mean deflection anglevhereA(y) describes the transverse profile and is peaked at
is given by A(0)=1. Here, the factos controls the depth of modulation
1 +[(2 sin 6)/7] Im sin @/ along the line and falls in the range<G<1. Such an array
tanyg=tan g L )/ 7] ImlS, (7 il . can be realized, for example, with a linear array of discrete
1+[(2 coso)/7] Im[S,(7,cos 6/ 7)] optical tweezers. Choosimg>1 would correspond to alter-

(52 nating potential wells and barriers, which also could be
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implemented optically, for instance with two different wave- Fosin 6= min{F (X, Ymax} (59)
lengths of light. x

_ Atagiven driving orientatiord, objects either are locked ,nening up the possibility that at least some trajectories
in to the array and deflected, or else escape into the drlvmgﬂght_ The associated bounds o, the marginally
direction. This is unlike the sinusoidal landscape, for which|ked-in angle, are ’

even the particles that are not locked in are deflected away

from the driving direction. Collection of the desired fraction 1 -sf (koa) . 1 +sf(koa)
should thus be more straightforward for the linear array of 77(6l)1—JrS <sin g < 77(3)1—+S, (60)
traps.

The equations of motion for objects driven determims“'wheren(a)=ak0a2K(ymax)/F0. With this definition, 7(a) de-
cally throughl(r) at angled are pends only weakly or, as in Sec. Ill.

The limit of weak modulations=0, once again yields Eqg.
d_X= LE.(r) +vg COS f (54) (23), the res~ult for a continuous barrier or trench. Similarly,
dt since lim_...f,(kpa)=0, large particles wittksa>1 are not

significantly affected by the modulation. Smaller particles

and encountering a deeply modulated lirse;» 1, are more inter-
d esting. Unfortunately, the simple bounds in E60) have no
ay_ ELF/(r) +uvgsin g, (55)  predictive power in this range, because Jirgf,(koa)=1 and
dt Eq. (60) reduces to & sinf,,< n(a).

This is not to say that exponential selectivity is lost in this
nge, but rather that a more detailed analysis is required to
ascertain when it can be attained. To illustrate the possibility
of achieving exponential sensitivity, we consider an experi-
mentally realizable landscape consisting of a line of discrete
optical tweezerg6], which we model as a line of discrete

s?x(kga)sin(kox) (56 Gaussian wells.
1+s

where the components of the substrate-mediated force reflegt
a convolution with a particle’s form factor. We will assume
the particles’ form factors to be separable, as in Eaf),

thereby sacrificing some generality in favor of clarity, so that

Fy(r) = al oko@2A(Y)

B. Line of Gaussian wells
and

After convolution with a Gaussian form factor, a single
well of intrinsic width w takes the form

1 +st,(koa) cOg koX)

1+s

Fy(r) = - al @23,A(Y) . (57

2
where the effective transverse profile Ky)=(f,°cA)(y). in o?(a)=w?+a2. This should not be mistaken for an ac-

Even this simplified set of couple.d equations is highly NON-¢rate model of an optical tweezer’s potential well, but rather
linear and cannot be integrated directly. Instead, we resort 95 a tractable model whose behavior approximates that ob-

I|m|t|ng_ arguments to determine when p_artlcles bec_:om erved in actual optical traps. A line of such wells separated
locked in and when they escape. These estimates provide thy

basis for our claim that sorting by inclined arrays of traps or ?/ a distanced results in the potential-energy landscape
barriers can offer exponential size selectivity. (r - nb¥?

As for the uniform fringe in Sec. Ill, the restoring force V(r) = Vo(a) 2 exp - “20%a) )
F,(r) attains its maximum value along=Ymax With Ymna,>0 "
for attractive wells and/y,,<0 for repulsive barriers. For Any trajectory locked in to this periodic landscape will
this separable modey,,ds a solution toaiA(y):O_ In more itself be periodic inx. This means tha_t such a trajectory
general nonseparable systems, it varies with positialong ~ Passes through a sequence of turning points at which
the array. In either case, this threshold depends on the olgxY(X,)=dy(x,t)=0. Any trajectory lacking such turning
ject's geometry and composition through the form factorpoints cannot be locked in, and so must escape from the line
f(r). of potential wells. Turning points come in two varieties:

A particle’s trajectory must Cross=y,. if it is to escape  those where particles make their nearest app_roaches to the
the line of traps. This requires there to be at least some poiniells’ centers, and those corresponding to their furthest ex-
x along the array wherggsin 6> F,(X,Yma)- Limits on this ~ cursions from the line of traps. Particles can escape when the

2
Vl(l’) = _VO exl<_ r_02> (61)

(62)

condition can easily be established, with latter type disappear. . _
For small to moderate driving anglés the more distant
; turning points occur near the midplanes between traps, where
Fosin 8 = maxF,(x, 58 X . Co .
0 x XFy 6 Yimad 58) the restoring force is weakest. Considering the influence of

just two traps(appropriate forb> o), centered ak=0 and
ensuring that every trajectory escapes and x=b, this suggests the point of escape will be nrab/2
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Figure &b) shows how the marginally locked-in angle
varies with size for this array. The lower dashed curve in Fig.
6 is the prediction of Eq(63). Its very good agreement with
simulation results in this parameter range confirms that the
limiting argument establishes a useful lower bound on the
0 These results therefore confirm that fractionation by a
line of traps offers exceptional size selectivity in an appro-
priate range of conditions. Figur€l® also demonstrates that
the locked-in fraction can be deflected to large angles, con-
trary to assertions in previous repoft.

While b> ¢ ensures optical fractionation’s exponential
size selectivity, other considerations provide a basis for op-
timizing the intertrap separation. The total lateral deflection

Z - - -t" ---------- for a captured particle in ahl-trap array is(N-1)b sin 6.
@ 0k ;4’/4/ i The array’s efficiency can be defined accordingly as the lat-
’ 299 eral deflection per trap:A(a,b)=b sin 4. Choosing b
o o? =20(a) optimizes this efficiency ah=(4/e)Vy/F;. This re-
0 Qop98® sult, however, does not necessarily optimize sensitivity to
) 0 0.05 0.1 0.15 particle size.
alb The sensitivity may be formulated as
FIG. 6. (a) Trajectories calculated according to E@S4) and 9 A(a,b)
(55) for the line of Gaussian wells described by E8Q). The wells Sab)=——", (64)
are separated by distanbeand have intrinsic widtlv=0.4b. Their Ja
effective width iso=\w?+a? wherea is the radius of a sphere gnd is optimized by setting
flowing through the array. The effective potential well depth is
(@) =(2/Ne)Vyl (oFg)=9.7 o?/a%. With the driving force oriented dS(a,b) #A(a,b) B
at #=17.5, spheres with radii larger tham=0.1b are locked into Jb  obga (65)

the line. (b) Dependence of the marginally locked-in deflection
angle 6,,, on radius,a. The lower dashed curve is the prediction of This yields an optimal separation somewhat larger than that
Eq. (63) and the upper from Eq60). The horizontal dashed line for maximum deflection:

indicates the orientation along which the dat@dpwere calculated.

2 _
=14y + 34, (66)
andy=¢. Expanding around this point yields 4
b2 with
ing, < -— 63 ,
Sing,, = n(a)ex% 80‘2> , ( ) X(a) _ }|:1 7 (@) o(a) i| 67
2 7@ o'(a@) ]

where n(a):(ZI\EE)VOI(oFO) measures the traps’ strength
relative to the driving force. Because E@3) is an upper Although fractionation by a line of optical traps has been
bound, no locked-in trajectories can occur fo¥ 6, Equa- demonstrated in practicgf], optimization based on these
tion (63) therefore establishes the exponential size depereriteria has yet to be implemented.

dence of particle deflection.

Figure 6 shows results of numerical simulations of trans-
port across a line of Gaussian potential wells. These simula-
tions were designed to model the experimental design of Ref. Periodic potential-energy landscapes have exceptional
[6], in which colloidal spheres are driven by flowing fluid promise for sorting continuous streams of mesoscopic ob-
past an inclined line of discrete optical traps. The drivingjects. Whether an object becomes locked in to a symmetry-
force for this system &y~ &au, whereé is the viscous drag selected direction through the landscape or instead follows
coefficient corrected for hydrodynamic coupling to walls, the direction of the driving force can depend sensitively on
is the radius, and is the flow speed. The sample trajectoriessize. This can be shown quite generally for the separable
in Fig. 6@a were calculated forw=0.4b and 7(a) potentials considered in Secs. IV and V. More subtle land-
=9.7 ¢%/a? at a fixed orientation o#=17.5°. They demon- scapes, which involve coupled motions in two or more di-
strate that spheres with radii larger than0.1b are locked mensions, are more difficult to analyze. Approximate argu-
in to the array of traps under these conditions, while smallements and simulations show that a particular one of these, a
spheres escape. Even a comparatively short array can resolee of Gaussian wells, offers both exponential size selectiv-
differences in radius of just a few percent, suggesting thaity and clean binary separations. More sophisticated, non-
nanometer-scale resolution should be attainable for hundredeparable, higher-dimensional landscapes, such as two-
nanometer-scale spheres in practical optical implementadimensional arrays of optical tragd], optical lattices[5],
tions. and microfabricated post arraj,3], can distribute continu-

VII. CONCLUSIONS
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ous distributions of objects into discrete fractid28]. The  can be driven into the deterministic limit by increasing the
analysis in this case is made far more difficult by the lack ofdriving and trapping forces.
closed-form solutions to the equations of motion, even in the Continuous, continuously tuned chromatographic size
deterministic limit. separations should have many applications in biological re-
Randomization by thermal forces substantially degrade§earch, drug discovery, and purification of mesoscale mate-
the selectivity with which a one-dimensionally modulated'ials. This article outlines the basic principles by which they
landscape can retain objects. A related study demonstrat¥¢rk, and suggests considerations for their optimization for
that thermal forcing restructures the pattern of locked-inParticular applications.
states in a two-dimensional array of potential w¢l8], and
eventually wipes them out as the array grows in size. This
contradicts the assertid®] that thermally assisted hopping This work was supported by the National Science Foun-
can lead to exponential size selectivity. Fortunately, the sortdation under Grants No. DBI-0233971 and No. DMR-
ing processes discussed here, as well as their generalizatio®304906.
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