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Objects driven through periodically modulated potential-energy landscapes in two dimensions can become
locked in to symmetry-selected directions that are independent of the driving force’s orientation. We investi-
gate this problem in the overdamped limit, and demonstrate that the crossover from free-flowing to locked-in
transport can depend exponentially on an object’s size, with this exceptional selectivity emerging from the
landscape’s periodicity.
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I. INTRODUCTION

The theme of transport through modulated potential-
energy landscapes pervades solid-state physics and arises in
many natural and industrial processes. This problem has
been studied extensively in the quantum-mechanical limit.
Considerably less attention has been paid to the classical
limit, where effects such as viscous damping and thermal
randomization complicate the analysis. This article focuses
on noninertial transport of classical objects driven through
periodically modulated potential-energy landscapes by con-
stant, uniform forces. The one-dimensional variant of this
problem has been thoroughly investigated[1], and its results
have been applied profitably to such processes as gel elec-
trophoresis. We focus instead on the overdamped motions of
classical objects as they flow through two-dimensional peri-
odic landscapes, about which far less is known. Such higher-
dimensional periodic landscapes have shown exceptional
promise as a mechanism for sorting mesoscopic objects. Our
discussion draws upon recent experimental realizations of
this process in which macromolecules or mesoscopic colloi-
dal particles are observed while moving through arrays of
microfabricated posts[2,3] and through regular arrays of op-
tical traps[4–6]. In both cases, particles’ differing interac-
tions with the physical landscape and their differing re-
sponses to the external driving force can cause them to
follow radically different paths, and thus into distinct frac-
tions.

Section II introduces the theoretical framework for de-
scribing driven objects’ interactions with inhomogeneous en-
vironments in the context of recent experimental realizations.
We then apply this in Sec. III to the particularly simple case
of transport across a linear barrier or potential trench. Such a
landscape can continuously sort mixtures of objects into two
distinct fractions, but with only algebraic sensitivity to prop-
erties such as size. Generalizing to periodic landscapes in
Secs. IV and V leads generally to fractionation withexpo-
nentialsize selectivity. Exploiting this exceptional resolution
for practical separations may be difficult, however, in the
most straightforward implementations. Other potential land-
scapes, such as a line of discrete potential wells, discussed in
Sec. VI, offer exponential size selectivity with good pros-
pects for practical implementations.

II. MOTIONS THROUGH LANDSCAPES

A. The equation of motion

Consider a Brownian particle moving, under the influence
of a uniform driving forceF0, through the force fieldFsr d
due to an inhomogeneous medium or landscape. Its trajec-
tory is described by the Langevin equation[1,7]

j
dr

dt
= Fsr d + F0 + Gstd, s1d

wherej is the particle’s viscous drag coefficient, andG de-
scribes random thermal fluctuations. This Langevin force sat-
isfies kGstdl=0 and kGstd ·Gst+tdl=j kBT dstd at tempera-
ture T, wheredstd is the Dirac delta function. A sphere of
radiusa immersed in an unbounded fluid of viscosityh, for
example, hasj=6pha.

In the limit thatF0 andF both greatly exceed the scale of
thermal forcesG, the Langevin equation, Eq.(1), reduces to
a first-order deterministic equation of motion. This article
focuses on two-dimensional systems, the simplest case ex-
hibiting nontrivial behavior. Even this deceptively simple
system yields surprising results, as we will see.

B. The driving force

In the particular case of fluid-borne colloidal particles, a
uniform driving force might be exerted by viscous drag, by
gravity, or through electrophoresis, magnetophoresis, or ther-
mophoresis. Each of these plays a central role in practical
fractionation techniques[8]. More generally, analogous re-
sults should be expected for such related systems as electrons
flowing through a periodically gated low-mobility two-
dimensional electron gas[9], magnetic flux quanta creeping
through patterned type-II superconductors[10–12] or Jo-
sephson junction arrays[13], and atoms migrating across
crystal surfaces[14].

In some instances of practical interest, the driving force
itself can be modulated by the physical landscape, leading to
additional interesting effects[15]. These, however, are be-
yond the scope of the present discussion. Time-dependent
driving forces also lead to exciting phenomena, but are not
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required for the effects we describe. We consider the simplest
case, where the driving forceF0 is both uniform and constant
and is oriented at a fixed angleu with respect to the land-
scape symmetry axis, here denotedx̂.

In the absence of other influences, particles would travel
along the driving direction while dispersing diffusively in the
transverse direction. Differential dispersion by transverse
diffusion has proved useful for continuously fractionating
heterogeneous samples across laminar flows in microfluidic
channels[16]. Adding a modulated substrate opens up addi-
tional avenues for separating particles according to their
sizes, and can greatly improve the resolution of such separa-
tions.

C. Creating landscapes

Several approaches have been introduced in recent years
for structuring potential-energy landscapes on molecular,
macromolecular, and cellular lengths scales. Among these
are arrays of lithographically defined microscopic posts inte-
grated into hermetically sealed fluidic channels, which pro-
vide a periodic and precisely tuned alternative to the gels
used for electrophoresis[17]. Arrays of interdigitated elec-
trodes[18,19] have also been used to establish periodic po-
tentials through dielectrophoresis. The emphasis in these
studies, however, has been on ratchetlike behavior induced
by time-dependent potentials.

More recently, techniques have been developed for tailor-
ing extensive potential-energy landscapes using forces ex-
erted by light. The most capable of these exploit optical gra-
dient forces, meaning that dipole moments induced in
illuminated objects respond to gradients in the light’s electric
field. Such forces are the basis for the single-beam optical
trap known as an optical tweezer[20], which acts as a
potential-energy well for particles with appropriate optical
properties. More generally, an extended optical intensity dis-
tribution will produce an associated potential-energy land-
scape.

The most straightforward way to project periodic intensity
profiles is to create a standing-wave interference pattern from
two or more coherent beams of light. Such patterns have
come to be known as optical lattices, particularly when ap-
plied to controlling the distributions and motions of matter.
More general intensity patterns can be created with holo-
graphic optical tweezers[21–23] or with the generalized
phase contrast technique[24], which establish extended op-
tical trapping patterns using computer-generated holograms.

D. Form factors

The physical landscape may be represented by a function
Isr d describing a potential-determining property such as the
local optical intensity. An object’s potential energy atr is not
simply proportional toIsr d, but depends on the object’s ge-
ometry and composition. For example, larger particles ap-
proaching a well-localized optical trap encounter the trap’s
intensity gradients at larger ranges than smaller particles. The
observation that different objects passing through the same
environment experience different potential-energy land-
scapes provides the foundation for the results that follow.

The effective potential may be expressed as the convolu-
tion,

Vsr d = sf + Idsr d s2d

=E fsx − r dIsxdd2x, s3d

of the two-dimensional landscapeIsr d with a form factorfsr d
describing the object’s interaction with the landscape. In
comparing to experimental realizations, we assume that con-
tributions from the form factor’s third dimension have been
integrated out. IfIsr d has a symmetry axis along thex̂ direc-
tion, then the associated force

Fsr d = − = sf + Idsr d s4d

generally does as well. Convolving withfsr d broadens fea-
tures inIsr d by an amount that depends on the object’s size,
shape, orientation, and composition.

In many cases of practical interest, the convolution in Eq.
(2) is most easily performed using the Fourier convolution
theorem:

sf + Idsr d = F−1h f̃skdĨskdj, s5d

where f̃skd and Ĩskd are the Fourier transforms offsr d and
Isr d, respectively, andgsr d=F−1hg̃skdj denotes the inverse
Fourier transform ofg̃skd. In some particularly simple cases,

both f̃skd andĨskd can be factored into components along the
x̂ and ŷ directions, reducing Eq.(5) to a product of one-
dimensional integrals. In other cases, separable approxima-
tions for the form factor emerge as the leading-order cumu-

lant expansion off̃skd.
For example, the form factor for a uniform dielectric cube

of side a aligned with thex axis and illuminated by colli-
mated light is

fsr d = aa QSa

2
− uxuDQSa

2
− uyuD , s6d

whereQsxd is the Heaviside step function, and

a = 2p
Îe0

c
S e0 − e

e + 2e0
D s7d

describes the matter-light interaction, in the quasistatic limit,
for a material of dielectric constante immersed in a medium
of dielectric constante0 [25]. Both this geometry and the
collimated light field are far simpler than would be encoun-
tered in most real-world optical trapping implementations
[26], but serve to illustrate our approach. A more complete
treatment of optical forces would also incorporate polariza-
tion effects, which cannot be captured in the present scalar
theory. Higher-order effects such as Mie resonances[25]
could be taken into account througha, but will be ignored in
the current discussion. Note thata is negative for a high-
dielectric-constant material in a low-dielectric-constant me-
dium; such particles are drawn toward regions of high inten-
sity. Low-dielectric-constant particles, by contrast, are
repelled by light.
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The aligned cube’s form factor is separable, with Fourier
transform

f̃skd = a a3 f̃ xskxad f̃ yskyad. s8d

The individual components are readily shown to be

f̃ xskad = f̃ yskad =
sin ka

ka
. s9d

Their leading-order cumulant expansion

f̃ xskad = f̃ yskad < expS−
1

6
k2a2D s10d

for ka,p demonstrates that the form factor’s Fourier trans-
form depends sensitively on particle size for a given wave

number. Note that, as defined,f̃ xskad and f̃ yskad are dimen-
sionless and normalized to unity atka=0.

The form factor for a uniform dielectric sphere of radiusa
illuminated by collimated light of wavelengthl.a is [25]

fsr d = a Îa2 − r2 Qsa − rd, s11d

which is not separable. The leading-order cumulant expan-

sion of f̃skd, however, is separable, with

f̃skd < a
2pa3

3
f̃ xskxad f̃ yskyad, s12d

where

f̃ xskad = f̃ yskad = expS−
1

10
k2a2D s13d

for ka,8.
More generally, an object’s form factor is nonzero only

over a limited domain set by its size. The corresponding
Fourier transform thus depends strongly onka, within the
appropriate range of wave numbers. We capture the ramifi-
cations of this boundedness by adopting the separable Gauss-
ian form

fsr d = a a expS−
r2

2a2D , s14d

whose Fourier transform

f̃skd = 2paa3 f̃ xskxad f̃ yskyad s15d

has components

f̃ xskad = f̃ yskad = expS−
1

2
k2a2D . s16d

LandscapeIsr d determines which wave numbers contribute
to the object’s transport properties. The following sections
explore a few particularly effective choices.

III. LINEAR FRINGES

In part to motivate a discussion of periodic potential-
energy landscapes, we first consider how objects traverse a

single trench or barrier arranged at an angle to the driving
force. This kind of landscape may be realized, for example,
by creating a linear optical trap with a cylindrical lens or a
diffractive line generator. Because such an optical landscape
can act as either a barrier or a trench, depending on the sign
of a, we will refer to both as fringes. In either case, a fringe
aligned with thex̂ axis inhibits transport in the transverse
direction. We model such a landscape as a Gaussian profile
of intrinsic width w,

Isr d = I0 expS−
y2

2w2D . s17d

Using the object’s form factor as defined in Eq.(14), the
associated potential is

Vsr d = 2paI0
a3w

ssad
expS−

y2

2s2sadD . s18d

The fringe’s apparent width to a particle of sizea is broad-
ened tossad=Îa2+w2.

In the limit that thermal forces may be ignored, the equa-
tions of motion reduce to the deterministic form

dx

dt
= v0 cosu, s19d

dy

dt
= j−1 Fysyd + v0 sin u, s20d

where the landscape-free drift speed isv0=j−1F0 and

Fysyd = 2p aI0
a3w

s3sad
y expS−

y2

2s2sadD . s21d

The landscape’s restoring forceFysyd reaches a maximum
at a distancey=ymax from the fringe’s axis, withymax=ssad
for our particular example. IfF0 sin u.Fysymaxd then a par-
ticle can cross the barrier. Such particles may be said to
escapethe barrier. By contrast, particles for which the barrier
is insurmountable travel unimpeded along thex̂ direction at
speedvx=v0 cosu and are said to belocked intothe land-
scape.

The marginal angleum at which an object just barely re-
mains locked into the barrier determines which objects are
deflected and which are not. The dependence ofum on par-
ticle size and other characteristics establishes the sensitivity
of the sorting technique. Referring to Eqs.(20) and(21), the
condition for locked-in transport,

sin u ø sin um ;
Fysymaxd

F0
s22d

=
uauI0

F0

2p

Îe

a3w

a2 + w2 , s23d

applies to both attractive trenchessymax= +sd and repulsive
barrierssymax=−sd. The general result Eq.(22) applies even
if fsr d is not separable because, in this case at least,Isr d is
independent ofx.
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The particular result in Eq.(23) shows than the marginal
lock-in angle depends only algebraically on size, and only
linearly on other properties througha. This is neither better
nor worse than the performance offered by other established
techniques such as gel electrophoresis or flow-field fraction-
ation [8]. One substantial benefit offered by selective trans-
port across a fringe is its ability to process a continuous
stream of objects rather than being restricted to discrete
batches. The selected fraction, moreover, can be tuned con-
tinuously, for example, by adjustingI0, F0, w, or u. Optical
implementations also can be optimized by varying the wave-
length of light, in which case resonances might be exploited
as a complementary mechanism for size separation.

Although a single fringe’s performance is somewhat lack-
luster, one might expect multiple fringes to fare better. The
first step along this direction is to consider a pair of parallel
Gaussian fringes. The effective potential is the sum of two
single-fringe potentials:

Vsr d = 2paI0
a3w

ssadFexpS−
sy + b/2d2

2s2 D
+ expS−

sy − b/2d2

2s2 DG , s24d

where b is the fringe separation. Ifb,s, the two fringes
overlap enough that the landscape resembles a single, broad-
ened fringe. Again, no more than algebraic selectivity should
be expected. In the opposite limit,b@s, the fringes are in-
dependent, and particles cross the double barrier with the
same facility with which they cross one. Neither of these
cases offers benefits over the single fringe.

For intermediateb, on the other hand, the landscape con-
sists of two unequal barriers, the smaller of which lies be-
tween the two fringes. The smaller barrier’s height depends
strongly onb/s, which, in turn, depends on the particle size
a. This lower intermediate barrier does not affect the fringes’
overall ability to separate objects, which is dominated by the
larger barrier. It suggests the possibility, however, that trans-
port acrossN overlapping fringes could be highly sensitive to
particle size. Those particles not able to jump the interfringe
barriers will be locked in and swept aside while others will
hop from one fringe to the next across the field. Highly se-
lective sorting is thus possible if edge effects due to the first
or last fringe (in the case of trenches or barriers, respec-
tively) can be circumvented.

IV. SINUSOIDAL LANDSCAPES

The foregoing discussion suggests that a periodically
modulated landscape inclined at an angle to the driving force
might be more effective than a single fringe at sorting objects
by size. To make this more concrete, and to illuminate the
role of periodicity, we consider the simplest and most in-
structive example of such a landscape, a sinusoid in theŷ
direction:

Isr d = I0 cossk0yd, s25d

shown schematically in Fig. 1. Apart from its mathematical
simplicity, this landscape has the advantage of being readily

implemented experimentally. In the case of optical forces, a
sinusoidal pattern can be created by interfering two coherent
laser beams, with the wave numberk0 being determined by
the optical wavelength and the angle between the beams.
Such an interference pattern is known as a one-dimensional
optical lattice [27], and is commonly used to control and
distribute cold atoms. More recently, optical lattices have
been used to separate populations of colloidal particles on
the basis of their sizes and indices of refraction[5].

The key to such a potential’s efficacy is in its Fourier
transform:

Ĩskd = s2pd2 I0dskxddsky − k0d. s26d

Convolution according to Eq.(5) therefore picks out the
component of the form factor’s Fourier transform at wave
numberk0:

Vsr d = I0E f̃skddskxddsky − k0dcosskxxdcosskyydd2k s27d

=I0f̃s0,k0dcossk0yd. s28d

Assuming a separable form forf̃skd such as Eq.(16),

Vsr d = I0 f̃ ysk0adcossk0yd s29d

=aÎ2pI0a
3 expS−

1

2
k0

2a2Dcossk0yd. s30d

For particle sizes satisfyingk0a.Î3, the amplitude of the
potential energy landscape’s sinusoidal modulations now de-
pends strongly on particle size through the wave number
dependence of the form factor. The particular form in Eq.
(30) reflects our choice of a Gaussian form factor in Eq.(14).
However, the arguments leading to this choice reveal that
comparable results should be obtained quite generally for
particles whose size is smaller than the wavelength of the
physical landscape’s undulations(e.g., for spherical particles
satisfyingk0a,8).

A. Deterministic limit

A particle’s trajectory through the sinusoidal landscape is
described in the deterministic limit by Eqs.(19) and (20),
with

FIG. 1. Schematic representation of a sinusoidal landscape,
modulated along theŷ direction.
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Fysyd = aÎ2pI0k0a
3 expS−

1

2
k0

2a2Dsinsk0yd. s31d

Nonseparable form factors again yield similar results, be-
causeIsr d is independent ofx. Because sinsk0ydø1, particles
become locked into thex̂ direction for orientations satisfying

sin u ø sin um =
uauI0

F0

Î2pk0a
3 expS−

1

2
k0

2a2D . s32d

By contrast to Eq.(23), this reflects an exceptional sorting
sensitivity: whether or not a particle becomes entrained by
the fringes dependsexponentiallyon particle size fork0a.1.
Among established fractionation schemes, only affinity chro-
matography offers comparable selectivity[8], and this can
operate only on discrete samples of a limited class of mac-
romolecules. Fractionation in a sinusoidal landscape can op-
erate on continuous sample streams and can be implemented
for a wide range of sample types.

Equations(19), (20), and (30) can be directly integrated
for this simple landscape. The motion in thex̂ direction is
trivial:

xstd = v0 cosu t. s33d

If the particles are locked in[i.e., if Eq. (32) is satisfied],
then the particles make no progress in theŷ direction, and
ystd is constant. Otherwise, integration gives

ystd =
2

k0
arctanFÎsin u + h

sin u − h
tanSk0v0t

2
Îsin2u − h2DG ,

s34d

where the relative strength of the landscape’s modulation is

hsad =
I0 k0f̃s0,k0ad

F0
. s35d

The time required to advance one fringe spacingb=2p /k0
can be seen to be

T =
2p

k0v0
Îsin2u − h2

, s36d

which yields a mean velocity in theŷ direction of

kvyl = v0
Îsin2u − h2. s37d

On average, the particle travels at an anglec to the x̂ axis,
given by

tan c =
kvyl
kvxl

= 50, sin u , h,

Îsin2u − h2

cosu
, sin u . h.

s38d

The deflection angle is plotted in Fig. 2(a) as a function of
the driving force’s orientationu for various values of the
normalized potentialhsad. The direction in which particles
flow increases fromc=0 as the driving force’s orientation
crosses the condition for marginal lock-in,um=arcsinh. At
steeper angles,c approachesu.

While this result is quite general, we can make the depen-
dence on particle size more explicit by assuming the follow-

ing functional form forhsad, implied by Eqs.(14) and(35):

hsad = h0 expS−
1

2
k0

2a2D , s39d

where h0=2paa3I0k0/F0. Figure 2(b) shows the resulting
dependence of deflection angle on particle size, if we assume
that the driving and trapping forces are adjusted such thath0
is a constant, independent ofa. It can be seen that particles
which are not locked in to the fringes atcsad=0 are fanned
out into various directions, depending on their size.

Unlike the case of the single fringe, where a particle ei-
ther flows along the fringe or else travels in the driving di-
rection, the sinusoidal landscape’s continuous dispersion dis-
tributes heterogeneous samples into multiple fractions, but
also limits the achievable size resolution. The fraction dis-
persed into a finite angular rangeDc aroundc includes an
associated range of sizes

Da < S ] c

] a
D−1

Dc, s40d

which, for the locked-in fraction atc=Dc /2!1, is

Da < cos2 u S ] h2

] a
D−1

Dc2. s41d

Thus, the exponential size selectivity implied by Eq.(32) can
be lost in the exponentially wide collection window imposed
by hsad on practical implementations. This performance can-
not be improved by passing the set of particles through the
fringes a second time, because of the fixed relationship be-
tweenDa andDc.

Although single-stage fractionation by a sinusoidal land-
scape yields broad size distributions, a narrow range of par-
ticle sizes can still be captured by using the following, two-
step process. The deflection angle is first set such that all
particles larger than a certain sizea2 will be locked in. These
locked-in particles are discarded, and the remaining particles

FIG. 2. (a) Travel direction for an inclined sinusoidal landscape
as a function of orientation for fixed size andhsad=0.1, 0.2, and
0.3. Trajectories are locked in tocsud=0 for uøum. The diagonal
dashed line indicates the result with no landscape.(b) Deflection
angle as a function of particle sizea at fixed driving orientation
tan u=0.441, assumingh0=0.4, independent ofa.
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are sent through a second potential landscape, with a differ-
ent deflection angle, chosen such that all particles larger than
a second sizea1,a2 are locked in. Only the locked-in par-
ticles from this second stage are then retained, so that all of
the remaining particles have sizes in the rangefa1,a2g, which
can be made as small as desired.

With periodicity providing the essential ingredient for
achieving exponential size selectivity, it might be expected
that any periodic landscape would do. Unfortunately, this is
not necessarily so. We already have demonstrated in Sec. III
that an array of well-separated Gaussian fringes offers only
algebraic, rather than exponential, size selectivity. A more
general periodic landscape with wavelength 2p /k0 can be
expanded as a Fourier series:

Isr d = I0o
n=0

`

bnsinsnk0yd, s42d

with Fourier coefficientsbn. If one of these coefficients is
significantly larger than all the others, then the equations of
motion can be approximated by Eqs.(19) and (20), and
equivalently good size selectivity will be obtained. If, on the
other hand, no single component dominates, then the super-
position will not necessarily perform so well.

B. Biased diffusion

Modeling thermal effects is reasonably straightforward
for the sinusoidal landscape. In this case, the Langevin equa-
tion [Eq. (1)] is most readily solved by transforming it into a
Fokker-Planck equation for the probability densityrsr ,td of
finding particles at positionr at time t. If inertial effects are
negligible, the Fokker-Planck equation for motion transverse
to the fringes reduces to a Smoluchowski equation[1],

]trsy,td + ]ySsy,td = 0, s43d

where the probability current is

Ssy,td = j−1fFsrd − kBT]ygrsy,td. s44d

In this equation,Fsrd is the total force on the particle, includ-
ing the driving force and the force due to the potential land-
scape,T is the temperature, andkB is Boltzmann’s constant.

Following Ref.[1], Eq. (43) can be solved in the steady-
state limit by takingSsy,td=Ssyd, independent oft. The re-
sulting average drift velocitykvyl for the sinusoidal potential
of Eq. (30) is given by

kvyl
v0 sin u

= 1 +
2 sin u

h
ImFS1St,

sin u

h
DG , s45d

where, as before,h=k0I0f̃s0,k0ad /F0, and we have intro-
duced the normalized temperaturet=kBT/V0. The function
S1st ,xd is defined recursively in terms of a continued-
fraction expansion,

Snst,xd =
1/4

t + in x + Sn+1st,xd
, s46d

which converges rapidly with increasing ordern.

The average velocity in thex̂ direction is unchanged from
the zero-temperature case. The mean deflection anglec is
thus given by

tan c = tanuH1 +
2 sin u

h
ImFS1St,

sin u

h
DGJ . s47d

This is plotted in Fig. 3(a) as a function of the angleu of the
driving force, for a fixed value of the normalized potential
hsad, and for various values of the normalized temperaturet.
It can be seen that the effect of increasing temperature is to
smooth out the transition between the locked-in and freely
flowing states of motion. In the zero-temperature limit, the
deflection angle is zero for all anglesu,arcsinh. For finite
temperatures, the mean deflection angle is nonzero even in
this “locked-in” state: the particles have a finite probability
per unit time of being driven over the interfringe barrier by
thermal fluctuations, and thereby advancing in theŷ direc-
tion.

The benefits of operating in the deterministic regime, in
which thermal forces are negligible, can be seen in Fig. 3(b),
where the deflection angle is shown as a function of the
particle sizea, for a fixed orientationu, over a range of
temperatures. Contrary to previous assertions that thermal
effects can enhance size selectivity[5], the only effect of
thermally assisted hopping in this system is to diminish the
sorting resolution.

In other words, achieving high-sensitivity sorting in prac-
tice will require that the thermal energy scale be small com-
pared to the landscape’s modulation. In a real-world imple-
mentation, increasing the depth of modulationI0 of the
physical landscape will often be more practical than decreas-
ing the temperature. Retaining the same lock-in conditions
then requires that the driving forceF0 be increased propor-
tionately. The practical limit on the achievable sorting effi-
ciency will then be set by the maximum driving force or
depth of modulation that can be obtained. For example, the

FIG. 3. (a) Deflection as a function of orientation at finite tem-
peraturest=0.01, 0.1, 0.2, and 0.3, assumingh=0.4. The diagonal
dashed line indicates the result with no landscape.(b) Dependence
of the travel direction on particle sizea for h0=0.4, tanu=0.441,
and the same set of temperatures. Raising the temperature weakens
the size dependence ofcsad, and thus reduces the selectivity.
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limitation for an optically implemented landscape is the
available laser power.

V. SEPARABLE TWO-DIMENSIONAL LANDSCAPES

The one-dimensional potential of Eq.(25) is one of the
few landscapes that allows for exact solutions of the equa-
tions of motion. Two-dimensional landscapes can be solved
analytically only if the potential can be written as a sum of
modulations in thex̂ and ŷ directions. In particular, we can
consider separate sinusoidal modulation with the same pe-
riod in the two directions:

Isr d = I0fsinsk0yd + sinsk0xdg, s48d

shown schematically in Fig. 4. This landscape is interesting
mainly because it leads to decoupled equations of motion:

dx

dt
= j−1V0k0 cossk0xd + v0 cosu + gstd s49d

and

dy

dt
= j−1V0k0 cossk0yd + v0 sin u + gstd, s50d

where gstd=G /j. Nevertheless, such a landscape could be
implemented experimentally using optical forces. For ex-
ample, mutually incoherent pairs of laser beams intersecting
at right angles would lead to a potential of the form given in
Eq. (48), as would pairs with orthogonal polarization.

Since the motions in thex̂ and ŷ directions are indepen-
dent in this case, the same exponential sensitivity to particle
size, Eq.(32), is obtained, in the absence of thermal forces.
As well, the same integration can be used to determine the
average deflection angle for free-flowing particles, analogous
to Eq. (38):

tan c =
Îsin2u − h2

Îcos2u − h2
. s51d

Similarly, for finite temperatures, the mean deflection angle
is given by

tan c = tanu
1 + fs2 sin ud/hg ImfS1st,sin u/hdg
1 + fs2 cosud/hg ImfS1st,cosu/hdg

.

s52d

The zero-temperature deflection angle is plotted in Fig. 5
as a function of the angleu of the driving force, for a fixed
value of the normalized potentialh. Also plotted isc as a
function of particle sizea for a fixed u. The results can be
seen to be similar to those obtained with one-dimensional
fringes. In other words, no qualitative difference is obtained
in this case by modulating in two directions rather than just
one.

In order to see other effects of increased dimensionality, it
is necessary to consider landscapes that cannot be separated
into one-dimensional terms; i.e., landscapes where the mo-
tion in one dimension depends on the position in the other.
Analytical solutions are not available for such landscapes.
However, it is possible to develop limiting arguments that
illustrate some novel features of transport in such landscapes,
including the continued possibility for sorting that is expo-
nentially sensitive to particle size.

VI. LINEAR TRAP ARRAYS

A. Periodically modulated fringe

Combining aspects of Secs. III and IV, we next consider
landscapes that are featureless outside a bounded region in
the ŷ direction, and are periodically modulated in thex̂ di-
rection. This features the clean separations of the continuous
barrier with the exponential selectivity of sinusoidal land-
scapes. It also provides a straightforward example of the sur-
prising complexity of nonseparable landscapes.

The simplest exemplar is the modulated line

Isr d = I0 Asyd
1 + s cossk0xd

1 + s
, s53d

whereAsyd describes the transverse profile and is peaked at
As0d=1. Here, the factors controls the depth of modulation
along the line and falls in the range 0,s,1. Such an array
can be realized, for example, with a linear array of discrete
optical tweezers. Choosings.1 would correspond to alter-
nating potential wells and barriers, which also could be

FIG. 4. Schematic representation of landscape sinusoidally
modulated in both thex̂ and ŷ directions according to Eq.(48).

FIG. 5. (a) Deflection as a function of orientation for a separable
two-dimensionally modulated landscape athsad=0.1, 0.2, and 0.3.
The diagonal dashed line indicates the result with no landscape.(b)
Size dependence of the deflection angle forh0=0.4 and tanu
=0.441.
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implemented optically, for instance with two different wave-
lengths of light.

At a given driving orientationu, objects either are locked
in to the array and deflected, or else escape into the driving
direction. This is unlike the sinusoidal landscape, for which
even the particles that are not locked in are deflected away
from the driving direction. Collection of the desired fraction
should thus be more straightforward for the linear array of
traps.

The equations of motion for objects driven deterministi-
cally throughIsr d at angleu are

dx

dt
= j−1 Fxsr d + v0 cosu s54d

and

dy

dt
= j−1 Fysr d + v0 sin u, s55d

where the components of the substrate-mediated force reflect
a convolution with a particle’s form factor. We will assume
the particles’ form factors to be separable, as in Eq.(14),
thereby sacrificing some generality in favor of clarity, so that

Fxsr d = aI0k0a
2Āsyd

sf̃xsk0adsinsk0xd
1 + s

s56d

and

Fysr d = − aI0a
2]yĀsyd

1 + sf̃xsk0adcossk0xd
1 + s

, s57d

where the effective transverse profile isĀsyd=sfy+Adsyd.
Even this simplified set of coupled equations is highly non-
linear and cannot be integrated directly. Instead, we resort to
limiting arguments to determine when particles become
locked in and when they escape. These estimates provide the
basis for our claim that sorting by inclined arrays of traps or
barriers can offer exponential size selectivity.

As for the uniform fringe in Sec. III, the restoring force
Fysr d attains its maximum value alongy=ymax, with ymax.0
for attractive wells andymax,0 for repulsive barriers. For

this separable model,ymaxis a solution to]y
2Āsyd=0. In more

general nonseparable systems, it varies with positionx along
the array. In either case, this threshold depends on the ob-
ject’s geometry and composition through the form factor
fsr d.

A particle’s trajectory must crossy=ymax if it is to escape
the line of traps. This requires there to be at least some points
x along the array whereF0sin u.Fysx,ymaxd. Limits on this
condition can easily be established, with

F0sin u ù max
x

hFysx,ymaxdj s58d

ensuring that every trajectory escapes and

F0sin u ù min
x

hFysx,ymaxdj s59d

opening up the possibility that at least some trajectories
might. The associated bounds onum, the marginally
locked-in angle, are

hsad
1 − sf̃xsk0ad

1 + s
, sin um , hsad

1 + sf̃xsk0ad
1 + s

, s60d

wherehsad=ak0a
2Āsymaxd /F0. With this definition,hsad de-

pends only weakly ona, as in Sec. III.
The limit of weak modulation,s=0, once again yields Eq.

(23), the result for a continuous barrier or trench. Similarly,

since lima→` f̃ xsk0ad=0, large particles withk0a.1 are not
significantly affected by the modulation. Smaller particles
encountering a deeply modulated line,s→1, are more inter-
esting. Unfortunately, the simple bounds in Eq.(60) have no

predictive power in this range, because lima→0f̃ xsk0ad=1 and
Eq. (60) reduces to 0,sinum,hsad.

This is not to say that exponential selectivity is lost in this
range, but rather that a more detailed analysis is required to
ascertain when it can be attained. To illustrate the possibility
of achieving exponential sensitivity, we consider an experi-
mentally realizable landscape consisting of a line of discrete
optical tweezers[6], which we model as a line of discrete
Gaussian wells.

B. Line of Gaussian wells

After convolution with a Gaussian form factor, a single
well of intrinsic width w takes the form

V1sr d = − V0 expS−
r2

2s2D s61d

with s2sad=w2+a2. This should not be mistaken for an ac-
curate model of an optical tweezer’s potential well, but rather
as a tractable model whose behavior approximates that ob-
served in actual optical traps. A line of such wells separated
by a distanceb results in the potential-energy landscape

Vsr d = V0sado
n

expS−
sr − nbx̂d2

2s2sad
D . s62d

Any trajectory locked in to this periodic landscape will
itself be periodic inx. This means that such a trajectory
passes through a sequence of turning points at which
]xysx,td=]tysx,td=0. Any trajectory lacking such turning
points cannot be locked in, and so must escape from the line
of potential wells. Turning points come in two varieties:
those where particles make their nearest approaches to the
wells’ centers, and those corresponding to their furthest ex-
cursions from the line of traps. Particles can escape when the
latter type disappear.

For small to moderate driving anglesu, the more distant
turning points occur near the midplanes between traps, where
the restoring force is weakest. Considering the influence of
just two traps(appropriate forb.s), centered atx=0 and
x=b, this suggests the point of escape will be nearx=b/2
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andy=s. Expanding around this point yields

sinum & hsadexpS−
b2

8s2D , s63d

where hsad=s2/ÎedV0/ ssF0d measures the traps’ strength
relative to the driving force. Because Eq.(63) is an upper
bound, no locked-in trajectories can occur foru.um. Equa-
tion (63) therefore establishes the exponential size depen-
dence of particle deflection.

Figure 6 shows results of numerical simulations of trans-
port across a line of Gaussian potential wells. These simula-
tions were designed to model the experimental design of Ref.
[6], in which colloidal spheres are driven by flowing fluid
past an inclined line of discrete optical traps. The driving
force for this system isF0<jau, wherej is the viscous drag
coefficient corrected for hydrodynamic coupling to walls,a
is the radius, andu is the flow speed. The sample trajectories
in Fig. 6(a) were calculated for w=0.4 b and hsad
=9.7 s2/a2 at a fixed orientation ofu=17.5°. They demon-
strate that spheres with radii larger thana=0.1 b are locked
in to the array of traps under these conditions, while smaller
spheres escape. Even a comparatively short array can resolve
differences in radius of just a few percent, suggesting that
nanometer-scale resolution should be attainable for hundred-
nanometer-scale spheres in practical optical implementa-
tions.

Figure 6(b) shows how the marginally locked-in angle
varies with size for this array. The lower dashed curve in Fig.
6 is the prediction of Eq.(63). Its very good agreement with
simulation results in this parameter range confirms that the
limiting argument establishes a useful lower bound on the
um. These results therefore confirm that fractionation by a
line of traps offers exceptional size selectivity in an appro-
priate range of conditions. Figure 6(b) also demonstrates that
the locked-in fraction can be deflected to large angles, con-
trary to assertions in previous reports[5].

While b.s ensures optical fractionation’s exponential
size selectivity, other considerations provide a basis for op-
timizing the intertrap separation. The total lateral deflection
for a captured particle in anN-trap array issN−1db sin u.
The array’s efficiency can be defined accordingly as the lat-
eral deflection per trap:Dsa,bd=b sin u. Choosing b
=2ssad optimizes this efficiency atD=s4/edV0/Fj. This re-
sult, however, does not necessarily optimize sensitivity to
particle size.

The sensitivity may be formulated as

Ssa,bd ;
] Dsa,bd

] a
, s64d

and is optimized by setting

] Ssa,bd
] b

=
]2Dsa,bd
] b ] a

= 0. s65d

This yields an optimal separation somewhat larger than that
for maximum deflection:

b2

4s2 = 1 +xsad + Î3 + x2sad, s66d

with

xsad =
1

2
F1 −

h8sad
hsad

ssad
s8sadG . s67d

Although fractionation by a line of optical traps has been
demonstrated in practice[6], optimization based on these
criteria has yet to be implemented.

VII. CONCLUSIONS

Periodic potential-energy landscapes have exceptional
promise for sorting continuous streams of mesoscopic ob-
jects. Whether an object becomes locked in to a symmetry-
selected direction through the landscape or instead follows
the direction of the driving force can depend sensitively on
size. This can be shown quite generally for the separable
potentials considered in Secs. IV and V. More subtle land-
scapes, which involve coupled motions in two or more di-
mensions, are more difficult to analyze. Approximate argu-
ments and simulations show that a particular one of these, a
line of Gaussian wells, offers both exponential size selectiv-
ity and clean binary separations. More sophisticated, non-
separable, higher-dimensional landscapes, such as two-
dimensional arrays of optical traps[4], optical lattices[5],
and microfabricated post arrays[2,3], can distribute continu-

FIG. 6. (a) Trajectories calculated according to Eqs.(54) and
(55) for the line of Gaussian wells described by Eq.(62). The wells
are separated by distanceb and have intrinsic widthw=0.4b. Their
effective width iss=Îw2+a2, wherea is the radius of a sphere
flowing through the array. The effective potential well depth is
hsad=s2/ÎedV0/ ssF0d=9.7 s2/a2. With the driving force oriented
at u=17.5°, spheres with radii larger thana=0.1b are locked into
the line. (b) Dependence of the marginally locked-in deflection
angleum on radius,a. The lower dashed curve is the prediction of
Eq. (63) and the upper from Eq.(60). The horizontal dashed line
indicates the orientation along which the data in(a) were calculated.
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ous distributions of objects into discrete fractions[28]. The
analysis in this case is made far more difficult by the lack of
closed-form solutions to the equations of motion, even in the
deterministic limit.

Randomization by thermal forces substantially degrades
the selectivity with which a one-dimensionally modulated
landscape can retain objects. A related study demonstrates
that thermal forcing restructures the pattern of locked-in
states in a two-dimensional array of potential wells[28], and
eventually wipes them out as the array grows in size. This
contradicts the assertion[5] that thermally assisted hopping
can lead to exponential size selectivity. Fortunately, the sort-
ing processes discussed here, as well as their generalizations,

can be driven into the deterministic limit by increasing the
driving and trapping forces.

Continuous, continuously tuned chromatographic size
separations should have many applications in biological re-
search, drug discovery, and purification of mesoscale mate-
rials. This article outlines the basic principles by which they
work, and suggests considerations for their optimization for
particular applications.
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